COOKING PASTA WITH DARK MATTER

REBECCA LEANE MIT CENTER FOR THEORETICAL PHYSICS

BASED ON 1911.06334, JCAP '20 w/ JAVIER ACEVEDO, JOE BRAMANTE, NIRMAL RAJ

PHENO 2020 MAY 5^{тн} '20

rleane at mit dot edu

Massachusetts Institute of Technology

NEUTRON STARS

Collapsed cores of old stars

 One of the most extreme environments in the Universe

+ Potential dark matter detectors!

LU h

WHY NEUTRON STAR CRUSTS?

+ Previous work estimated neutron stars to be a degenerate core of neutrons

+ Core could be exotic (i.e. uds matter, meson/hyperon condensates) Dark matter scattering with such phases can be suppressed

+ Dark matter interactions might be density dependent

+ Further into the neutron star, less and less is understood

No imperial knowledge of NS interiors – but crust best understood!

INSIDE NEUTRON STARS

NUCLEAR PASTA

Rebecca Leane rleane at mit dot edu

Caplan, Schneider, Horowitz '18

THE PASTA COMMUNITY

+ Pasta impacts properties of neutron stars and core collapse supernovae

+ Neutrino interactions: impacts neutrino opacity in supernovae

+ Electron interactions: impact shear viscosity, thermal and electrical conductivity

Caplan, Schneider, Horowitz '18

Rebecca Leane rleane at mit dot edu

Use known response functions from simulations to calculate dark matter scattering with pasta!

DARK MATTER – NEUTRON STAR INTERACTIONS

~ 100 MeV – 1 PeV DM mass sensitivity through nucleon + pasta scattering

Acevedo, Bramante, **RL**, Raj, JCAP '20

Rebecca Leane rleane at mit dot edu

 $T_{\infty}^{\mathrm{crust}} = 1620 \mathrm{K}$

DARK MATTER – NEUTRON STAR INTERACTIONS

 $\sim 10 \text{ eV} - 1 \text{ MeV}$ DM mass sensitivity through phonon excitations

Rebecca Leane rleane at mit dot edu

Acevedo, Bramante, **RL**, Raj, JCAP '20

HOW DOES PASTA COMPARE WITH DIRECT DETECTION?

PASTA CAN BEAT DIRECT DETECTION

Low + high masses, velocity suppressed, spin-dependent, inelastic DM

BONUS: ANNIHILATION HEATING

+ Annihilation heating boosts temperature to ~2470K

(compared to ~1630 K kinetic heating)

→ requires less telescope time!

+ Crust-only scatters attain captureannihilation equilibrium very fast

 \rightarrow annihilation proceeds at max rate for cross sections > 10^-40 cm^2/s

CONCLUSIONS

+ Neutron stars can provide significant enhancement of DM scattering sensitivity, through kinetic and annihilation heating

- + Neutron star cores not well understood but the crusts are! Calculating DM-crust scattering leads to more robust limits
- + Powerful sensitivity for DM masses ~10 eV 1 PeV Can be more powerful than direct detection! Best sensitivity from dark matter-pasta scattering.

Radio and infrared telescopes coming online very soon Signal identified potentially in a day!

EXTRA SLIDES

Massachusetts Institute of Technology

- 1

CRUST LAYERS AND DENSITIES

DARK MATTER - PASTA INTERACTIONS

+ Use known response functions from simulations, takes into account coherence of neutrons at different densities and temperatures

$$\sigma_{\rm pasta}(q) = S_{\rm pasta}(q) \ \sigma_{\rm n\chi}$$

$$\tau_{\rm DM} = \frac{1}{g_s} \int_{\rm crust} n_{\rm T} \sigma_{\rm T\chi} \frac{1}{\rho} \frac{dP}{d\rho} d\rho$$

$$\tau_{\rm DM} =$$

$$D_{\rm DM} = \frac{\sigma_{\rm n\chi}}{g_s} \int_{\rm pasta} \langle S_{\rm pasta}(q) \rangle_q \ \frac{n_{\rm n}(\rho)}{\rho} \frac{dP}{d\rho} d\rho$$

DARK MATTER - PHONON INTERACTIONS

+ Single-phonon emission in the low momentum regime (w/ linear dispersion relation) is described by a static structure function, which relates per-nucleon cross section w/ phonon excitation cross section

$$S_{\rm phonon}(q) = rac{q}{2m_{\rm n}c_{\rm s}}$$

 $\sigma_{\rm phonon}(q) = S_{\rm phonon}(q)\sigma_{\rm n\chi}$

Where cs is the speed of the superfluid phonon which is ~ the neutron Fermi speed ~ 0.04c

> Energy deposited > halo KE q * Cs > m*vesc^2 m * vesc * Cs > m*vesc^2

DARK MATTER CAPTURE

$$E_{\rm DM} = m_{\rm DM}(\gamma - 1)$$

$$\dot{M}_{\rm DM} = \rho_{\rm DM} v_{\rm halo} \times \pi b_{\rm max}^2 \times f$$

$$\tau_{\rm DM} = \int_{\rm crust} n_{\rm T} \sigma_{\rm T\chi} dz$$

$$\frac{dP}{dz} = g_s \rho$$

$$\tau_{\rm DM} = \frac{1}{g_s} \int_{\rm crust} n_{\rm T} \sigma_{\rm T\chi} \frac{1}{\rho} \frac{dP}{d\rho} d\rho$$

CRUST SCATTERING

$$\sigma_{\mathrm{T}\chi}(q) = \left(\frac{\mu_{\mathrm{T}\chi}}{\mu_{\mathrm{n}\chi}}\right)^2 A^2 F^2(q) S_{\mathrm{T}}(q) \sigma_{\mathrm{n}\chi}$$

+ F(q) (Helm form factor) captures the loss of coherence over a nucleus Suppresses σ for the de Broglie wavelength q[^] -1 < nuclear radius

+ ST(q) (static structure function) accounts for coherence among the relative amplitudes of dark matter scattering on multiple nuclei Suppresses the cross section for $q^{-1} >$ nuclear separation

