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Probing the nature of dark matter

@ Still no idea about fundamental nature
o WIMP dark matter well motivated

@ Realistic detection prospects

Collider searches
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Past and present work

New physics at colliders:

@ Mono-W Dark Matter Signals at the LHC: Simplified Model Analysis,
JCAP, 1512.00476

@ Dark matter at the LHC: Effective field theories and gauge invariance,
PRD, 1503.07874

@ Leptophilic dark matter with Z’ interactions, PRD, 1407.3001
Astrophysical searches for new physics:

@ Dark Bremsstrahlung as the Dominant Dark Matter Annihilation
Channel, 1612.xxxxx

@ Powerful Solar Signatures of Long-Lived Dark Mediators, 1612.xxxxx

@ Impact of Mass Generation for Simplified Dark Matter Models,
Submitted to JCAP, 1610.03063

@ Dark Forces in the Sky: Signals from Z’ and the Dark Higgs, JCAP,
1605.09382
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Effective Field Theories for Dark Matter
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@ Model independent
o Useful at low energies, i.e. direct detection

@ Colliders? Need to be careful...
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Simplified Models for Dark Matter

@ Only lightest mediator is retained, set limits on couplings and
mediators

@ Allows for richer phenomenology

Benchmark Simplified Models:

s-channel spin-1 s-channel spin-0 t-channel spin-0
X f X X f
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...this can run into problems!

@ Not intrinsically capable of capturing full phenomenology of UV
complete theories

@ Separate consideration of these benchmarks can lead physical
problems and inconsistencies
P Results may not map to any viable model!

@ To avoid this, important to consider minimal ingredients of gauge
invariant models, ensuring valid interpretation of experimental data
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Issues with Spin-1 Simplified Models

Consider the high energy production of longitudinal Z’ bosons:

7!

X

<

G;Z(k) = k”/mzx

X < z'

violates unitarity at high energies, for axial-vector Z’-DM couplings.
Kahlhoefer et al, 1510.02110
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Issues with Spin-1 Simplified Models

Consider the high energy production of longitudinal Z’ bosons:

7!

X

<

G;Z(k) = k”/mzx

X < z'

violates unitarity at high energies, for axial-vector Z’-DM couplings.
Kahlhoefer et al, 1510.02110

X — >——nr " 77 X 4
S
X ——— v 77 X VA
Bad high energy behaviour cancelled by additional scalar!
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Issues with Spin-1 Simplified Models

Consequences for both Majorana and Dirac DM.

For Majorana DM, vector current is vanishing, leaving pure axial-vector
interactions.

** Inclusion of the dark Higgs is unavoidable! **

Furthermore, can’t write down Majorana mass term without breaking the
U(1), symmetry.
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Minimal Simplified Setup

New fields: Majorana DM candidate, x, Spin-1 dark gauge boson, Z’,
Dark Higgs field S.

i 1 N 1 .
Laark = §XaX - ngZ,”X'YS’Y,uX - ny (XEXLS + h.C.>
+(D*S)1(D,S) — 1251S — A(57S)?

@ S obtains a vev to give mass to x and Z’
@ U(1) charges of x and S related by gauge invariance: Qs = 2Qy
e Parameters tied together: y, /g, = ﬂmx/mzf

sine
2
Small mixing between dark and visible sectors allows mediators to decay.

Lonix = Z'" B, — Ans(STS)(HTH)
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Annihilation Processes: Standard Simplified Models

@ To investigate phenomenology, focus on hidden sector models, where
couplings to SM are small

@ In universe today, only s-wave contributions to the annihilation cross
section are relevant. P-wave contributions are negligible, suppressed
as DM velocity v§ ~107°

s-wave p-wave p-wave /
phase space suppressed
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What happens when we consider
the self-consistent dark sector?
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Annihilation Processes: Self-Consistent Scenario

New s-wave annihilation process!

Further, this allows us to probe the nature of the scalar with comparable

strength to the Z'.

R.K.Leane (CoEPP, Melbourne U.)
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Annihilation Processes:

Comparison

xx—SZ

-2z

10-22 . . . . ; 1022 ; .
L. = 250 GeV mz. =100 GeV
_g0-2s| ms =20 Gev | | mg =10 GeV
12 12
o o
§ 107% § 10°% ¢
= >
5 - 5
~ 10-28} -2z ] ~ 10-28}
10-30 . . . . . 10-30
0 100 200 300 400 500 600 0
m, [GeV]
10-% T T T T T 10-20 . ;
mz. =20 GeV S 2+ =20 GeV
10-22} mg = 20 GeV XX =S 10-22}
o o
o 10-24 | ] o 10-24 |
"’E 10 "’E 10
S G
2 10-%} k| 2 107 %6¢
& -2z &
10-28 | 10-28 |
10-% 10-3 . .
0 50 100 150 200 250 300 0 50 100
m, [GeV]
N. Bell, Y. Cai,
Leane (CoEPP, Melbourne U TRIUMF

150 200 250 300
m, [GeV]

R. Leane, 1605.09382
December 7th, 2016 13




Indirect Detection Limits

@ Best limits from Dwarf Spheriodal Galaxies, most DM dense objects
in our sky

@ Use PYTHIA to generate gamma-ray spectra, compare to
Fermi Pass 8 data and find limits
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Linked to Dark Sector Mass Generation

Majorana DM:

@ Pure axial-vector couplings to Z'

o Both DM and Z' masses arise from dark Higgs mechanism

@ Both vector and axial-vector couplings possible

o If Z’ has pure vector couplings:
> 7' mass: either Higgs or Stueckelberg mechanism
» DM mass: bare mass or Higgs mechanism
> Mass generation mechanisms not necessarily connected
@ If Z’ has non-zero axial couplings:
» Dark Higgs gives mass to both Z’ and DM (like Majorana)

N. Bell, Y. Cai, R. Leane, 1610.03063
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Other Ingredients for DM Discovery?

@ Correctly enforcing gauge invariance is key for DM models, leads to
important phenomenology missed in “over-simplified” model approach

@ Another important avenue is finding distinctive new signatures,
exploiting strengths of different experiments
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Complementary probe of the DM scattering cross section

DM can be captured in the Sun by scattering with solar nuclei.

@ Of possible DM annihilation modes, only neutrinos weakly interacting
enough to escape

@ These neutrinos are measured at SuperK and IceCube, provide probe
of DM scattering cross section

@ What if DM annihilates to long-lived mediators instead?
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Solar Signatures of Long-lived Dark Mediators

If annihilation proceeds via long-lived dark mediators:
© Neutrinos will be less attenuated
@ Otbher particles such as gamma-rays can escape

v (extinguished) v (less attenuated)

v (extinguished)

v (attenuated) (unattenuated)

Short-lived mediators Long-lived mediators

R. Leane, K. Ng, J. Beacom, 1612.xxxxx
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Measuring gamma-rays with new Fermi-LAT data

Standard annihilation fluxes of DM to gamma-rays are enormous.
For example, if 100 GeV DM with scattering aig ~ 107%% ¢m?2 annihilates
directly to gamma-rays, the energy flux is

~1072GeVem 2571,
In this region, the sensitivity of Fermi-LAT is
~1078GeVem 257t
The annihilation flux is in excess of sensitivity by a factor of 108!

— Long-lived mediators open a window to otherwise lost DM signals,
potentially large rates!

R. Leane, K. Ng, J. Beacom, 1612.xxxxx
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Optimal sensitivity to the DM scattering cross section

Can outperform direct detection exps by several orders of magnitude!
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Understanding the nature of DM is one of the foremost goals of the
physics community. Important steps forward for discovery include:

Theoretically consistent models:
@ Single mediator Simplified Models not always self-consistent

@ Two mediators can be required by gauge invariance

P Leads to different phenomenology
> New s-wave process, which dominates the annihilation rate
P> Allows the scalar to be probed with comparable strength to the

vector

New ways of exploiting complementarity of DM searches:

@ DM annihilation to long-lived mediators in the Sun provides probe of

DM scattering cross section
@ Can outperform direct detection exps by several orders of magnitude
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Backup slides
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Long-lived dark mediator flux

do T dN
2 ann 2

— = E?—— x Br(Y — SM) x Pqyv, 1
dE 4mD2 < EVgE Bl ) (1)

where
@ Dg =1 A.U. is the distance between the Sun and the Earth
o E2dN/dE is the particle energy spectrum per DM annihilation
@ Br(Y — SM) is the branching fraction of the mediator Y to SM
particles

@ Pguv is the probability of the signal surviving to reach the detector,

given by
Psurv _ e—R@/’yCT - e—D@/'ycr_ (2)

Need mediator Y to have sufficiently long lifetime 7 or boost factor
v = my/my, leading to a decay length L that exceeds the radius of the
Sun, Ra, as

L=~cr > Ro. (3)
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Gamma-ray limit procedure
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Gamma-ray limits
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Neutrino limit procedure
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Long-lived dark mediator constraints

o BBN: The observed relic abundance of SM particles by BBN implies
any new mediator must have lifetime 7 which satisfies 7 < 1s.

e CMB: DM annihilation to SM products in the early universe is
constrained by the CMB.

e Supernovae: Particularly for low mass mediators (<GeV), from
mediator decay and supernova cooling.

o Colliders: If the dark sector is secluded, may be negligible.
Otherwise, Belle, BaBar, ATLAS and CMS

e Beam Dump/Fixed Target experiments: Most relevant when the
mediator has ~sub-GeV mass. E137, LSND and CHARM

@ Other indirect detection signals: Fermi-LAT and DES
measurements of dSphs at low DM mass, and large positron signals
can be constrained by AMS-02

@ Thermalization and Unitarity: Issues with thermalization for > 10
TeV DM, and unitarity issues over O(100) TeV DM mass.
Furthermore bound state effects at high DM mass.
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Impact of Specifying Mass Generation

Required y — 7’

‘ Scenario X mass Z' mass ‘ . Annihilation processes ‘ Z' pol ‘
coupling type
| Bare mass term Stueckell_;)erg Vector Zy
mechanism . ,
Non-zero ><
axial-vector . »
. . The U(1) charge {
1 Yuka[\)Na fc)l-:l-pllng Dark Hl.ggs assignments of : z Zr & 7]
to Dark Higgs mechanism and Y determine P
the relative size of
the V and A . z
couplings. 1
Yukawa coupling Stueckelberg ' o ‘ ,
m to Dark Higgs mechanism Vector . P S o
\Y, Bare mass term Dark H'_ggs Vector l W Zr
mechanism . L

N. Bell, Y. Cai, R. Leane, 1610.03063
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DM and Z’ Mass from Dark Higgs

@ Couplings related:
Yx/8x = ﬁmx/mZ/

@ sZ' dominates over Z'Z’ when
kinematically allowed

@ Cross sections enhanced by
longitudinal Z' (for Z'Z’ this

107y mz. = 20 GeV | only occurs when both vector
1072 | - M= 20 ‘GeV ] and axial couplings are
0 200 400 600 800 1000 non-zero)
m, [GeV]

N. Bell, Y. Cai, R. Leane, 1610.03063
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DM mass from Dark Higgs, Z’ mass from Stueckelberg

@ Gauge and Yukawa couplings no longer related, freedom in processes

e 7' is only transversely polarized
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Bare DM Mass, Z’ Mass from Stueckelberg

@ Gauge and Yukawa couplings no longer related, U(1) charges of Z’
and dark Higgs unrelated

e Z' is only transversely polarized
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Two-Mediator Scenario: Charge Assignments

Yukawa term is

EYukawa = - (yXYRXLS + hC) 5 (4)

and so the charges of the dark sector field must be chosen to satisfy

Qur — @y, = Qs - (5)
Set the dark Higgs charge to Qs = 1. The x charges therefore satisfy
1 1
Qa= E(QXR QXL) = 2 (6)
1 1
Qv = E(QXR + QXL) 5 + QXL' (7)

These charges determine the vector and axial-vector couplings of the Z’ to
the x. Qg4 is completely determined, while there is freedom to adjust Qv
by choosing @y, , appropriately.
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Two-Mediator Scenario: Indirect Detection Constraints
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Lagrangian: Scenario |

In all scenarios, the gauge group is: SM ® U(1),, and so the the covariant
derivative is D, = DSM + ngXZL, where @ denotes the U(1), charge.

Bare DM Mass, Z’ Mass from Stueckelberg

This is the most minimal spin-1 setup, and no additional fields are
introduced, as Z’ obtains mass via Stueckelberg and DM is vectorlike so a
bare mass term is allowed. The lagrangian is

. . sine _ 1
L= Lsm+iX(0+ igyQuZ )"\ — TZWVBW — myxx + §m%/Z’“ZL-

(8)
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Lagrangian: Scenario |l

In this scenario, the vev of the dark Higgs field provides a mass generation
mechanism for the dark sector fields Z’ and y. Before electroweak and
U(1), symmetry breaking, the most general Lagrangian is

L o _ sine_,,.,
L= Lsu+ iX Pxi + iXrPxr — (nXrXLS + h.c.) — TZ’“ B
+(D"S)1(D,S) — 12STS — As(S1S)? — Ans(STS)(HTH).  (9)

After symmetry breaking, this becomes

1 1
LD— §m§s2 + Em%,Z’“ZL — my XX
+giwZ"Z)s — Asws® — 2\pshs(vs + wh) +ge > ZLFTHF (10)
f
_ _ Y
— & QuZXV"'X — 8y QaZ, X5 — —=SXX -
V2
R.K.Leane (CoEPP, Melbourne U.)
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Lagrangian: Scenario IlI

DM Mass from Dark Higgs, Z’ Mass from Stueckelberg

The most minimal Lagrangian for this scenario is

L=_Lsy +iy@+@¢w1)—77x¢—ﬁmzwmuun

1 1
+ Eww%—f@2—1&w—§nm%MHx

with the real scalar ¢ = w + s, where w is the vev of ¢ and s is the dark
Higgs. The vectorlike charge Qv can be chosen freely.
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Lagrangian: Scenario IV

Bare DM Mass, Z’' Mass from Dark Higgs

The most minimal gauge invariant Lagrangian is

. . sine_,,,,, o
L = Lsy+iX (3 + ’ngVZ,) X — sz Bw/ — My XX (12)

+ (0" + ig Qs 2")S]" [0, + i QsZ))S] — y2S'S
- )\S(STS)2_)\hs(ST5)(HTH)‘

The vectorlike charge Qv and dark Higgs charge Qs under the dark U(1),
can be chosen freely.
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Unitarity bounds

m™m=,

s< %
ngX

m™m
Z/

mg < 5 A
8

Parameters related, sensible choices required to avoid unitarity problems:

mzr = gXW
1

— w
Vo

Vx/8 = ﬁmx/mZ’

my =
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