A STORY OF THE GALACTIC CENTER GAMMA-RAY EXCESS

REBECCA LEANE MIT CENTER FOR THEORETICAL PHYSICS

MIT LNS COLLOQUIUM FEBRUARY 3RD 2020

> Massachusetts Institute of Technology

OUTLINE

- History and characteristics of the excess
- Arguments for dark matter vs. pulsars
 - How to tell the two hypotheses apart
- Recent controversies
- Ways forward

2008: FERMI LAUNCHES

THE FERMI TELESCOPE

- Full-sky field of view, in low-Earth orbit (340 miles)
- Sensitive to gamma rays ~300 MeV to few TeV
- Publicly available data!

2009: INNER GALAXY EXCESS FOUND

2009: INNER GALAXY EXCESS FOUND

Possible Evidence For Dark Matter Annihilation In The Inner Milky Way From The Fermi Gamma Ray Space Telescope

Lisa Goodenough¹ and Dan Hooper^{2,3}

¹Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10003 ²Center for Particle Astrophysics, Fermi National Accelerator Laboratory, Batavia, IL 60510 ³Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637

THE GALACTIC CENTER GEV EXCESS

- Identified by Dan Hooper and Lisa Goodenough
- Highly significant bright excess in gamma rays
- Peaked at 1-3 GeV

Goodenough+Hooper '09

2010-14: CLUES OF ITS PROPERTIES

MORPHOLOGY

Calore et al '14

Abazajian+ Kaplinghat '12

Spherically symmetric around Galactic Center

Scales like r ^{-2.4} extending out to around 10°, roughly fits standard dark matter (NFW) profile

SPECTRUM

 Shape appears to be uniform throughout the Inner Galaxy

Calore et al '14

INTENSITY

INTENSITY

INTENSITY+SPECTRUM

Well fit by a ~20-60 GeV dark matter particle annihilating to hadronic final states

...with the intensity expected of thermal particle dark matter

Channel	$(10^{-26} \mathrm{cm}^3 \mathrm{s}^{-1})$	m_{χ} (GeV)	$\chi^2_{ m min}$	<i>p</i> -value
$ar{q}q$	$0.83\substack{+0.15 \\ -0.13}$	$23.8^{+3.2}_{-2.6}$	26.7	0.22
$\bar{c}c$	$1.24_{-0.15}^{+0.15}$	$38.2^{+4.7}_{-3.9}$	23.6	0.37
$ar{b}b$	$1.75_{-0.26}^{+0.28}$	$48.7_{-5.2}^{+6.4}$	23.9	0.35
$ar{t}t$	$5.8^{+0.8}_{-0.8}$	$173.3_{-0}^{+2.8}$	43.9	0.003
gg	$2.16\substack{+0.35 \\ -0.32}$	$57.5_{-6.3}^{+7.5}$	24.5	0.32
W^+W^-	$3.52_{-0.48}^{+0.48}$	$80.4^{+1.3}_{-0}$	36.7	0.026
ZZ	$4.12_{-0.55}^{+0.55}$	$91.2^{+1.53}_{-0}$	35.3	0.036
hh	$5.33\substack{+0.68\\-0.68}$	$125.7^{+3.1}_{-0}$	29.5	0.13
$ au^+ au^-$	$0.337\substack{+0.047\\-0.048}$	$9.96\substack{+1.05 \\ -0.91}$	33.5	0.055

Calore et al '14

SIGNAL OF ANNIHILATING DARK MATTER?

- Spatially consistent
 - approximately spherical
 - extending out of the center
- Intensity of thermal particle dark matter
 can match thermal relic annihilation cross section
- Spectrum consistent: invariant with position and shape

If DM, first evidence of DM – SM interactions

2014: A COMPELLING CASE FOR DARK MATTER

2014: A COMPELLING CASE FOR DARK MATTER

The Characterization of the Gamma-Ray Signal from the Central Milky Way: A Compelling Case for Annihilating Dark Matter

Tansu Daylan,¹ Douglas P. Finkbeiner,^{1,2} Dan Hooper,^{3,4} Tim Linden,⁵ Stephen K. N. Portillo,² Nicholas L. Rodd,⁶ and Tracy R. Slatyer^{6,7}

¹Department of Physics, Harvard University, Cambridge, MA ²Harvard-Smithsonian Center for Astrophysics, Cambridge, MA ³Fermi National Accelerator Laboratory, Theoretical Astrophysics Group, Batavia, IL ⁴University of Chicago, Department of Astronomy and Astrophysics, Chicago, IL ⁵University of Chicago, Kavli Institute for Cosmological Physics, Chicago, IL ⁶Center for Theoretical Physics, Massachusetts Institute of Technology, Boston, MA ⁷School of Natural Sciences, Institute for Advanced Study, Princeton, NJ

HOOPER+GOODENOUGH CITATIONS

Inspire-HEP, at Feb 2020

HOOPER+GOODENOUGH CITATIONS

Daylan et al comes out

PH T

PULSARS AS THE EXCESS

- Pulsars are old, rapidly spinning neutron stars
- Pulsars also match the gamma-ray energy spectrum

PULSARS AS THE EXCESS

- Pulsars are old, rapidly spinning neutron stars
- Pulsars also match the gamma-ray energy spectrum

 Pulsars appear as point sources to Fermi, which mean they have angular extent below detector thresholds

POINT SOURCES AS THE EXCESS

Resolved Point Sources:

Bright enough to be individually detected

• Unresolved Point Sources:

Too dim to be individually detected, cannot be individually resolved, but collectively could explain GCE

DISTINGUISHING DM vs. POINT SOURCES

Counts of gamma rays from PS exhibit different statistical behavior compared to those from annihilating DM:

- DM: smooth continuous halo in the Galaxy
 - Follows Poisson statistics
- PS: individual sources, clumpy
 - Follows Non-Poisson statistics, complex to characterize

Lee+Lisanti+Safdi, '15

Drastically different predictions!

TEMPLATE FITTING

Isotropic

Diffuse

Bubbles

Assign statistics to each template.

Exploit different statistical predictions, along different spatial distributions

NFW

Distinguish the origin of the excess gamma rays.

Lee, Lisanti, Safdi, Slatyer, Xue (PRL '15)

Lee, Lisanti, Safdi, Slatyer, Xue (PRL '15)

Lee, Lisanti, Safdi, Slatyer, Xue (PRL '15)

Lee, Lisanti, Safdi, Slatyer, Xue (PRL '15)

2.

Also in 2015...

WAVELET METHOD: AGREEMENT

Detection of clustering of photons, consistent with a new population of millisecond pulsars with the intensity of excess

Bartels, Krishnamurthy, Weniger (PRL '15)

Lee, Lisanti, Safdi, Slatyer, Xue (PRL '15)

Bartels, Krishnamurthy, Weniger (PRL '15)

2016-2018: REIGN OF THE PULSARS

HOOPER+GOODENOUGH CITATIONS

Inspire-HEP, at Feb 2020

HOOPER+GOODENOUGH CITATIONS Come out

Inspire-HEP, at Feb 2020

Lee, Lisanti, Safdi, Slatyer, Xue (PRL '15)

Bartels, Krishnamurthy, Weniger (PRL '15)

40

32

24

16

8

0

-8

-16

-10

-5

Ω
WHAT IS DRIVING THIS PREFERENCE?

If there are some point sources present, but **not** following one of these templates, could this:

+ **push up** the point source signal found with the current templates and

- **push down** the inferred dark matter signal?

WHAT IS DRIVING THIS PREFERENCE?

If there are some point sources present, but **not** following one of these templates, could this:

+ push up the point source signal found with the current templates and
- push down the inferred dark matter signal?

Investigate if a bias is possible:

In a simulated proof-of-principle scenario
In the real Fermi data

BIAS SEARCH USING SIMULATED DATA

Simulate:

• Point Sources: along the Galactic Disk and Bubbles

Bubbles are the new ingredient, which we simulate as a possible source of bias

 Smooth emission: from isotropic+diffuse background, bubbles, and dark matter.

Analyze this data, with exactly the same templates.

Analyze this data, with exactly the same templates. Return same normalizations.

What if we now instead analyze the data with NFW distributed PS instead of the PS bubbles?

What if we now instead analyze the data with NFW distributed PS instead of the PS bubbles?

The dark matter signal is misattributed to point sources! RL+Slatyer (PRL '19)

Add even more....

The dark matter signal is misattributed to point sources! RL+Slatyer (PRL '19)

IS THERE A THRESHOLD IN SIMULATIONS?

Inject an order of magnitude more DM (~15%)

Takes this much to reconstruct DM, but still not all of it

EVIDENCE OF MISATTRIBUTED DM

- Cross talk between templates appears to be possible, when an unmodelled component is present
- Large Bayes factor preference for adding NFW PS, and pushing DM flux down, just like Lee at al '15 paper

...and in this case we KNOW dark matter is there!

ARE THERE BUBBLES POINT SOURCES?

- No evidence
- Serves as proof-of-principle example of mismodeling impact

TESTING WITH THE REAL FERMI DATA

If this effect is present, template likely not saturated in its ability to absorb dark matter flux.

Inject a fake dark matter signal into the Fermi data.

INJECTED DM SIGNAL + DATA

INJECTED DM SIGNAL + DATA

LARGER INJECTED DM SIGNAL + DATA

LARGER INJECTED DM SIGNAL + DATA

Zero DM!

BOMBARD THE GALAXY!

BOMBARD THE GALAXY!

BOMBARDED DM SIGNAL + DATA

Finally, but low.

ALTERNATIVE TO INJECTION: GOING NEGATIVE

- Both simulated example and real data show similar behavior: significant preference against DM interpretation of the data
- A potential DM signal could be incorrectly discarded: due to the presence of a not yet discovered unresolved PS population, or another mismodelling effect

• DM could substantially contribute to the GCE!

2019: DARK MATTER STRIKES BACK

Dark Matter Strikes Back at the Galactic Center

Rebecca K. Leane^{1, *} and Tracy R. Slatyer^{1, 2, †}

¹Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA ²School of Natural Sciences, Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA (Dated: April 19, 2019)

Home U.K. News Sports U.S. Showbiz Australia Femail Health Science Money

Latest Headlines | Science | Games

Mysterious gamma rays emanating from the center of our galaxy could be dark matter, scientists say

- Gamma rays coming from the center of the galaxy may be dark matter
- A new study has placed dark matter back in the discussion
- Previous research posited that gamma rays were caused by a pulsar
- Scientists say those calculations may have critical flaws

Bartels, Krishnamurthy, Weniger (PRL '15)

Bartels, Krishnamurthy, Weniger (PRL '15)

Challenged RL+Slatyer (PRL '19)

Plii

Lee, Lisanti, Safdi, Slatyer, Xue (PRL '15)

Challenged RL+Slatyer (PRL '19)

l li ī

WAVELET METHOD RE-EVALUATION

Updated to mask out Fermi's new point source catalog.

WAVELET METHOD RE-EVALUATION

Updated to mask out Fermi's new point source catalog.

Turns out the 2015 paper correctly found point sources

Zhong, McDermott, Cholis, Fox '19

WAVELET METHOD RE-EVALUATION

Updated to mask out Fermi's new point source catalog.

Turns out the 2015 paper correctly found point sources

...but **not** point sources that can explain the excess.

Zhong, McDermott, Cholis, Fox '19

Lee, Lisanti, Safdi, Slatyer, Xue (PRL '15)

Challenged RL+Slatyer (PRL '19)

Bartels, Krishnamurthy, Weniger (PRL '15)

Lee, Lisanti, Safdi, Slatyer, Xue (PRL '15)

Challenged RL+Slatyer (PRL '19)

Bartels, Krishnamurthy, Weniger (PRL '15)

Shown these point sources are not bulk of excess

Zhong, McDermott, Cholis, Fox '19

NOW

EFFECTS OF ADDITIONAL FREEDOM

 Break excess template into north and south pieces, let them float independently

EFFECTS OF ADDITIONAL FREEDOM

 Break excess template into north and south pieces, let them float independently

Preference for point sources:

Gone

THE DATA PREFERS THE FREEDOM

Looking at only the smooth components

Data strongly prefer additional freedom, north/south asymmetry

RL+Slatyer (to appear)

REPRODUCE IN SIMULATIONS?

 Simulate the smooth asymmetry (best-fit to the data)

 Analyze it with one set of NFW point sources and NFW smooth, as per previous studies

RL+Slatyer (to appear)

Real data, one excess template

Rebecca Leane

RL+Slatyer (to appear)

Real data, one excess template

Simulated asymmetry, analyzed with one excess template

No simulated point sources

RL+Slatyer (to appear)

Real data, one excess template

Simulated asymmetry, analyzed with one excess template

No simulated point sources

FAKE POINT SOURCES IN SIMULATIONS

 We explicitly have shown that the point source evidence, from Non-Poissonian template fitting, is not currently robust

- Asymmetry maybe not intrinsic property of excess, but unmodeled asymmetry can produce spurious point sources
- Any variance larger than expected, due to mismodeling, can produce a spurious galactic center excess point source signal

EVIDENCE FOR POINT SOURCES AT THE GALACTIC CENTER

Lee, Lisanti, Safdi, Slatyer, Xue (PRL '15)

Challenged RL+Slatyer (PRL '19)

Bartels, Krishnamurthy, Weniger (PRL '15)

Shown these point sources are not bulk of excess

Zhong, McDermott, Cholis, Fox '19

EVIDENCE FOR POINT SOURCES AT THE GALACTIC CENTER

Lee, Lisanti, Safdi, Slatyer, Xue (PRL '15)

Challenged RL+Slatyer (PRL '19)

Shown not currently robust RL+Slatyer (to appear)

Bartels, Krishnamurthy, Weniger (PRL '15)

Shown these point sources are not bulk of excess

Zhong, McDermott, Cholis, Fox '19

Rebecca Leane

CURRENT PICTURE

Morphology

Not robustly known, but big implications **Energy Spectrum**

Comparable to millisecond pulsars

Can be well fit with DM annihilating to hadrons

Well-explained by DM (Predicted by thermal relic cross section)

Intensity

Tension for pulsars strong constraints on pulsar luminosity function

Rebecca Leane

CURRENT PICTURE

Morphology

Not robustly known, but big implications Energy Spectrum

Comparable to millisecond pulsars

Can be well fit with DM annihilating to hadrons

Rebecca Leane

Intensity Well-explained by DM (Predicted by thermal relic cross section)

Tension for pulsars strong constraints on pulsar luminosity function

CURRENT PICTURE

Morphology

Not robustly known, but big implications **Energy Spectrum**

Comparable to millisecond pulsars

Can be well fit with DM annihilating to hadrons

Rebecca Leane

Tension for pulsars strong constraints on pulsar luminosity function

MOVING FORWARD: DARK MATTER vs PULSARS

Rebecca Leane

PULSARS?

 Future detection of radio emission from pulsars by MeerKat and SKA

Calore et al 1512.06825

DARK MATTER?

- Dwarf spheroidal observations, want to see consistent signal
- Antiproton excess overlaps?

Cholis et al 1903.02549

Rebecca Leane

DARK MATTER?

- Dwarf spheroidal observations, want to see consistent signal
- Antiproton excess overlaps?
- Can be accommodated by fairly minimal models

Cholis et al 1903.02549

Rebecca Leane

0.5

10

5

σν(×10⁻²⁶cm³s⁻¹)

Hooper, RL, Tsai, Wegsman, Witte '19

- Excess firmly detected, signal origin is unknown controversial signal!
- Tested if mismodeling can bias non-Poissionian methods
- Simulated proof-of-principle: DM signal is misattributed to point sources
- Real Fermi data: Injected DM misattributed to point sources!
 - Dark matter could provide dominant contribution to the excess?

- Excess firmly detected, signal origin is unknown controversial signal!
- Tested if mismodeling can bias non-Poissionian methods
- Simulated proof-of-principle: DM signal is misattributed to point sources
- Real Fermi data: Injected DM misattributed to point sources!
 Dark matter could provide dominant contribution to the excess?
- Preference for asymmetry in the excess itself
 - If asymmetry not allowed, can force a positive DM signal negative
- Updated with asymmetry, lose evidence for point sources, get smooth signal!
- Spurious point source signals can arise from mismodeling

- Excess firmly detected, signal origin is unknown controversial signal!
- Tested if mismodeling can bias non-Poissionian methods
- Simulated proof-of-principle: DM signal is misattributed to point sources
- Real Fermi data: Injected DM misattributed to point sources!
 Dark matter could provide dominant contribution to the excess?
- Preference for asymmetry in the excess itself
 - If asymmetry not allowed, can force a positive DM signal negative
- Updated with asymmetry, lose evidence for point sources, get smooth signal!
- Spurious point source signals can arise from mismodeling

• Previous 2015 point source evidence could be from spurious signals, not robust

- Excess firmly detected, signal origin is unknown controversial signal!
- Tested if mismodeling can bias non-Poissionian methods
- Simulated proof-of-principle: DM signal is misattributed to point sources
- Real Fermi data: Injected DM misattributed to point sources!
 - Dark matter could provide dominant contribution to the excess?
- Preference for asymmetry in the excess itself
 - If asymmetry not allowed, can force a positive DM signal negative
- Updated with asymmetry, lose evidence for point sources, get smooth signal!
- Spurious point source signals can arise from mismodeling
- Previous 2015 point source evidence could be from spurious signals, not robust
 - Signal looks consistent with being smooth

Rebecca Leane

EXTRA SLIDES

Rebecca Leane

- 1

FUTURE STUDIES

• Better models:

- Test well-motivated point source populations
- Improved diffuse models, effects of perturbing diffuse models
- Understanding the method:
 - Systematics under perfect modeling (Chang et al '19)
 - Mitigating the issues

POISSON TEMPLATE FITTING

Rebecca Leane

Prediction for each pixel

$$\mu_p = \sum_{\ell} \, \alpha_\ell \, \mu_{p,\ell}$$

Likelihood per pixel is a Poisson distribution

$$p_{n_p}^{(p)}(\boldsymbol{\theta}) = \frac{\mu_p^{n_p}(\boldsymbol{\theta})}{n_p!} e^{-\mu_p(\boldsymbol{\theta})}$$

Total likelihood is given by product of Poisson likelihoods for each pixel

$$p(d|\boldsymbol{\theta}, \mathcal{M}) = \prod_{p} p_{n_p}^{(p)}(\boldsymbol{\theta})$$

Шiī

NON-POISSON TEMPLATE FITTING

Photon count distribution has an additional dependence on a pixel-dependent PS source-count distribution. This can be modelled by a broken power law:

$$\left(\frac{S}{S_b}\right)^{-n_1} S \ge S_b$$

 $\left(\frac{S}{S_b}\right)^{-n_2} S < S_b$

3 additional degrees of freedom: indices n1 and n2, and break Sb

l li i

NON-POISSON TEMPLATE FITTING

t=0

Predictions for each pixel in terms of generating functions, incorporates both Poisson and non-Poisson templates. $d^k \mathcal{P}^{(p)}(t)$

Poisson generating function:

 $P_k^{(p)}$

$$\mathcal{P}_{\ell}^{(p)}(t) = e^{\mu_{p,\ell}(t-1)}$$

Non-Poisson generating function:

$$\mathcal{P}_{\rm NP}(t;\boldsymbol{\theta}) = \prod_{p} \exp\left[\sum_{m=1}^{\infty} x_{p,m}(\boldsymbol{\theta})(t^m - 1)\right]$$

Expected number of m-photon sources is

$$x_{p,m}(\boldsymbol{\theta}) = \int_0^\infty dS \frac{dN_p}{dS}(S;\boldsymbol{\theta}) \int_0^1 df \rho(f) \frac{(fS)^m}{m!} e^{-fS}$$
SCF
PSF
probability seeing m photons when fS is expectation

Malyshev+Hogg '11 Lee+Lisanti+Safdi '15

Home U.K. News Sports U.S. Showbiz Australia Femail Health Science Money

Latest Headlines | Science | Games

Mysterious gamma rays emanating from the center of our galaxy could be dark matter, scientists say

- Gamma rays coming from the center of the galaxy may be dark matter
- A new study has placed dark matter back in the discussion
- Previous research posited that gamma rays were caused by a pulsar
- Scientists say those calculations may have critical flaws

NPTF TOOLS

 Analyze data using NPTFit (Mishra-Sharma, Rodd, Safdi '16) github.com/bsafdi/NPTFit

 Simulate NP data using NPTFit-Sim (Rodd, Toomey) github.com/nrodd/NPTFit-Sim

REAL DATA vs SIMULATED DATA

THEORY IDEAS?

- Looking in individual ROIs
- Better understanding diffuse models
- Studying individual energy bins
- Complementary methods: SKYFACT, wavelet technique

DM	Mediator		Annihilation Products					
DM			$\overline{f}+f$	$\overline{N_R} + N_R$	$\phi_1 + \phi_2$	$Z_1'+Z_2'$	$\phi + Z'$	
min_1/2	s-chan	spin-0	$\frac{\Gamma_{\rm DM} \otimes \Gamma_f:}{P \otimes P}$ $\frac{P \otimes S}{P \otimes S}$	$\frac{\Gamma_{\text{DM}} \otimes \Gamma_{N_R}:}{P \otimes P}$ $P \otimes S$	$\frac{\Gamma_{\rm DM}:}{P}$	No	No	
spin-1/2		spin-1	$\frac{\Gamma_{\text{DM}} \otimes \Gamma_f:}{V \otimes V}$ $V \otimes A$ $A \otimes A^*$	$\frac{\Gamma_{\text{DM}} \otimes \Gamma_{N_R}:}{V \otimes V}$ $V \otimes A$ $A \otimes A$	$\frac{\Gamma_{\rm DM}}{V}$	$\frac{\Gamma_{\rm DM}:}{V+A}$	$\frac{\Gamma_{\rm DM}:}{V}$	
	t-chan	spin-1/2	-	-	$\frac{\Gamma_{\phi_1} \otimes \Gamma_{\phi_2}:}{S \otimes P}$	$\frac{\Gamma_{Z'_1} \otimes \Gamma_{Z'_2}:}{V \otimes V}$ $V \otimes A$ $A \otimes A$	$\frac{\Gamma_{\phi} \otimes \Gamma_{Z'}:}{S \otimes V}$ $P \otimes V$	
		spin-0	Yes*	Yes	-	-	Ŧ	
		spin-1	-	-	- 1	-	-	
s-in 0	s-chan	spin-0	$\frac{\Gamma_f:}{S+P}$	$\frac{\Gamma_{N_R}}{S+P}$	Yes	Yes	No	
spin-0	s-chan	spin-1	No	No	Yes	Yes	No	
	t-chan	spin-0	-	-	Yes	Yes	No	
	t-chan	spin-1/2	$\frac{\Gamma_f}{S+P}$	$\frac{\Gamma_{N_R}:}{S+P}$	-	-	-	
		spin-1	-	-	No	Yes	Yes	
spin-1	s-chan	spin-0	$\frac{\Gamma_f:}{S, P}$	$\frac{\Gamma_f:}{S,P}$	Yes	Yes	Yes	
		spin-1	$rac{\Gamma_f:}{V,A}$	$rac{\Gamma_f:}{V,A}$	No	Yes	Yes	
	t ahan	spin-0	-	-	Yes	Yes	No	
	t-chan	spin-1	-	-	Yes	Yes	Yes	
		spin-1/2	V, A	V, A	-	-	-	

PH T

WHAT ABOUT THE BOXY BULGE?

Population of stars at the GC

 Unmodelled candidate could impact interpretation of the data

BOXY BULGE CAN EXPLAIN GCE

 Find evidence for PS associated with the Boxy Bulge!

 Can do just as well as NFW PS. Beats in some cases.

...BUT CAN'T BIAS THE NPTF

In simulated data, successfully recover the DM component when Bulge emission is simulated, and is analyzed with NFW PS.

VARYING THE DIFFUSE MODEL

SIMULATED DATA, 3FGL MASKED						
Simulation	Injected	Analysis Templates	DM Flux	Bayes Factor		or
	DM Flux		(95%)			
Bubbles PS		Same as simulated	[1.2,2.1]~%	$\sim 10^{39}$		$\sim 10^{49}$
Disk PS	$\sim 1.5\%$	Same but Bubbles PS \rightarrow NFW PS	[0.0, 0.2] % DEFICIT		$\sim 10^9$	
NFW DM		Same but no Bubbles PS	[0.0, 0.9]~%			
Bubbles PS		Same as simulated	[11.8, 12.8]%	$\sim 10^{19}$		$\sim 10^{27}$
Disk PS	$\sim 12.5\%$	Same but Bubbles PS \rightarrow NFW PS	[8.8, 10.8] % DEFICIT		$\sim 10^8$	
NFW DM		Same but no Bubbles PS	[11.1, 12.2]%			
Bulge PS		Same as simulated	[0.4, 2.5]~%	$\sim 10^{18}$		$\sim 10^{29}$
Disk PS	$\sim 1.5\%$	Same but Bulge PS \rightarrow NFW PS	[0.0, 3.5]~%		$\sim 10^{10}$	
NFW DM		Same but no Bulge PS	[3.9, 5.0]~%			

	Real Data, 3FGL Masked						
Injected DM Flux	Analysis Templates	DM Flux (95%)	Bayes Factor				
None	Disk PS + Iso PS Diffuse + Iso P + Bub P + DM	[0.8, 1.9]%					
	Disk PS + Iso PS + NFW PS Diffuse + Iso P + Bub P+ DM	[0.0, 0.2] %	$\sim 10^{13}$				
	Disk PS + Iso PS Diffuse + Iso P + Bub P + DM	[2.2,3.3]~%					
$\sim 1.5\%$	Disk $PS + Iso PS + NFW PS$ Diffuse + Iso P + Bub P + DM	[0.0, 0.3] % DEFICIT	$\sim 10^{16}$	$\sim 10^3$			
	Disk PS + Iso PS + NFW PS Diffuse + Iso P + Bub P + Fixed DM	Fixed at injection value $(\sim 1.5\%)$			$\sim 10^{13}$		
$\sim 8\%$	Disk PS + Iso PS Diffuse + Iso P + Bub P + DM	[8.2, 9.3] %					
	Disk PS + Iso PS + NFW PS Diffuse + Iso P + Bub P + DM	[0.0, 0.9] % DEFICIT	$\sim 10^{23}$				
$\sim 20\%$	Disk PS + Iso PS Diffuse + Iso P + Bub P + DM	[20.6, 21.7] %					
	Disk PS + Iso PS + NFW PS Diffuse + Iso P + Bub P + DM	[11.2, 17.2] % DEFICIT	$\sim 10^{12}$				

Figure 7. Inner Galaxy (masked) results for analysis of the real *Fermi* data without any added simulated DM signal. **Left:** Flux posteriors when analyzed with NFW PS, Disk PS, Isotropic PS, and Poisson NFW DM, Bubbles, Isotropic and Diffuse backgrounds. **Right:** Luminosity functions for this scenario for NFW PS, Disk PS, and Isotropic PS.

Figure 8. Inner Galaxy (masked) results for the case where fake DM signal (flux ~ 1.5% of sky) is injected into the *Fermi* data. Left: Flux posteriors when analyzed with NFW PS, Disk PS, Isotropic PS, and Poisson NFW DM, Bubbles, Isotropic and Diffuse backgrounds. Right: Luminosity functions for this scenario for NFW PS, Disk PS, and Isotropic PS.

Figure 10. Inner Galaxy (masked) results for the case where fake DM signal with a larger normalization (flux $\sim 8\%$ of sky) is injected into the *Fermi* data. Left: Flux posteriors when analyzed with NFW PS, Disk PS, Isotropic PS, and Poisson NFW DM, Bubbles, Isotropic and Diffuse backgrounds. Right: Luminosity functions for this scenario for NFW PS, Disk PS, and Isotropic PS.

EXCESS CANDIDATES

- Pulsars
 - Matching gamma-ray spectrum
 - Small scale power in inner Galaxy gamma-ray emission
 - BUT why don't we see the low-mass X-ray binaries in the Inner Galaxy?
 - AND luminosity function of pulsars doesn't match Lee at al (2015)
 - Population of MSPs would have to be different to those in disk of the Milky Way or globular clusters
- Cosmic Outbursts
- Annihilating DM?

DIFFUSE TEMPLATE

Diffuse gamma-ray emission in Milky Way

- = Gas density x CR proton density
- + gas density x CR electron density
- + photon density x CR electron density

Use Fermi diffuse model, p6v11