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Probing the nature of dark matter

@ Still no idea about fundamental nature
o WIMP dark matter well motivated

@ Realistic detection prospects

Collider searches

q~>{

Searches provide

Direct
complementary )
information detection

! 4
Indirect detection
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Effective Field Theories for Dark Matter
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@ Model independent
@ Useful at low energies, i.e. direct detection

@ Colliders? Need to be careful, cutoff at new physics scale.
Violate perturbative unitarity, as o ~ E2/\*
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Simplified Models for Dark Matter

@ Only lightest mediator is retained, set limits on couplings and
mediators

@ Allows for richer phenomenology

Benchmark Simplified Models:

s-channel spin-1 s-channel spin-0 t-channel spin-0
X f X X f
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...this can run into problems!

@ Not intrinsically capable of capturing full phenomenology of UV
complete theories

@ Separate consideration of these benchmarks can lead physical
problems and inconsistencies
P Results may not map to any viable model!

@ To avoid this, important to consider minimal ingredients of gauge
invariant models, ensuring valid interpretation of experimental data
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Issues with Spin-1 Simplified Models

Extend SM by additional U(1),.
Consider the high energy production of longitudinal Z’ bosons:

X > z'
G'LLL(k) = k“/mzl

X < z'

violates unitarity at high energies, for axial-vector Z’-DM couplings.
Kahlhoefer et al, 1510.02110
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E'LLL(k) = k“/mzl

X < z'

violates unitarity at high energies, for axial-vector Z’-DM couplings.
Kahlhoefer et al, 1510.02110

X —>———r A~ 77 X zZ'
S
X ——— v 77 X '
Bad high energy behavior canceled by additional scalar!
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Issues with Spin-1 Simplified Models

Consequences for both Majorana and Dirac DM.

For Majorana DM, vector current is vanishing, leaving pure axial-vector
interactions.

** Inclusion of the dark Higgs is unavoidable! **

Furthermore, can’t write down Majorana mass term without breaking the
U(1), symmetry.
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Issues with Spin-1 Simplified Models

Consequences for both Majorana and Dirac DM.

For Majorana DM, vector current is vanishing, leaving pure axial-vector
interactions.
** Inclusion of the dark Higgs is unavoidable! **

Furthermore, can’t write down Majorana mass term without breaking the
U(1), symmetry.

For Dirac DM: axial-vector Z' interactions will yield same issues.
However, possible to have pure vector couplings to a Z'. Stueckelberg

mechanism may give mass to the Z’, and a bare mass term for the DM is
possible.
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Minimal Simplified Setup

New fields: Majorana DM candidate, x, Spin-1 dark gauge boson, Z’,
Dark Higgs field S.

£ == ESM + Cdark + Emix

i 1 _ 1 _
Laark = EXaX - ZgXZIMX')’S’Y“X - ny (XEX[_S + hC)

+(D"S)T(D,S) — 125tS — A\s(575)?

sine

Cmix - _TZ/HVBMV - )\hs(STs)(HTH)
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Minimal Simplified Setup

New fields: Majorana DM candidate, x, Spin-1 dark gauge boson, Z’,
Dark Higgs field S.
£ == ESM + Edark + Emix

i 1 _ 1 .
Liark = EXax — ZgXZ'“xfyw“X — oW (XLCXLS + h.c.)
+(D"S)T(D,S) — 125tS — A\s(575)?

sine

Cmix - _TZ/HVBMV - )\hs(STS)(HTH)

@ U(1), charges of x and S related by gauge invariance: Qs = 2Q,
e S obtains a vev, (S) = %(W—i—s—kia), gives mass to x and Z’
@ Masses:

mz = gw my, = %yxw — Yy/8 = ﬁmx/mzr
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How does this compare
to simplified models?



Indirect Detection with Simplified Models

@ In universe today, s-wave contributions to the annihilation cross
section dominate where present. P-wave contributions usually
negligible, suppressed as DM velocity v§ ~107°

ov=a+ bv®+ ..

@ Collider and direct detection experiments — increasing tension
between allowed DM parameters and the thermal WIMP paradigm

@ Hidden on-shell models common approach to avoid such constraints.
i.e. Abdullah et al, 1404.6528

X —h A 77
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Spin-1 mediator annihilation processes

For fermionic DM:

Z/

Vector: s-wave Always s-wave!
Axial: s/p-wave
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Spin-0 mediator annihilation processes

Analogous diagrams not quite the same.

X foooX—_— 5 X———meoo- 5
S
> ------ < ......... 5
X Fox—t s X—"Ll---mee-- s
Pseudoscalar: s-wave Always p-wave! Pseudoscalar: s-wave
Scalar: p-wave Scalar: p-wave

No s-wave diagram for scalars!
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What happens when we consider
the self-consistent dark sector?



Annihilation Processes: Self-Consistent Scenario

New s-wave annihilation process!
Further, this allows us to probe the nature of the scalar with comparable
strength to the Z'. Bell, Cai, RKL, 1605.09382 (JCAP 2016)
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Annihilation Processes: Comparison
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Bell, Cai, RKL, 1605.09382 (JCAP 2016)
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Indirect Detection Limits

@ Best limits from Dwarf Spheriodal Galaxies, most DM dense objects
in our sky
@ Mixed final states and different mediator masses

> Use PYTHIA to generate gamma-ray spectra, compare to
Fermi Pass 8 data and find annihilation limit

N SZ,
JE— ZIZ/
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Indirect Detection Limits

@ Best limits from Dwarf Spheriodal Galaxies, most DM dense objects
in our sky
@ Mixed final states and different mediator masses

> Use PYTHIA to generate gamma-ray spectra, compare to
Fermi Pass 8 data and find annihilation limit
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Indirect

Detection Limits
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Linked to Dark Sector Mass Generation

Majorana DM:

@ Pure axial-vector couplings to Z'

@ Both DM and Z' masses arise from dark Higgs mechanism

@ Both vector and axial-vector couplings possible

e If Z’ has pure vector couplings:
» 7' mass: either Higgs or Stueckelberg mechanism
» DM mass: bare mass or Higgs mechanism
> Mass generation mechanisms not necessarily connected
@ If Z’ has non-zero axial couplings:
» Dark Higgs gives mass to both Z' and DM (like Majorana)

Bell, Cai, RKL, 1610.03063 (JCAP 2017)
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Impact of Specifying Mass Generation

Required x — 7’

‘ Scenario X mass Z' mass h Annihilation processes ‘ Z' pol ‘
coupling type
| Bare mass term StueckeII.Jerg Vector { p4n
mechanism . l
Non-zero ><
axial-vector . o
Yuk i . The U(1) charge {
I u a[\)/va chIi:l_P ing Dark H|ggs assignments of x; ; - 78z
to Dark Miggs mechanism and yg determine P
the relative size of 7
the V and A ) 2
couplings. {
I Yukawa cou'plmg Stueckell.gerg Vector 7
to Dark Higgs mechanism . .
v Bare mass term Dark H|ggs Vector ;%/ y4
mechanism P
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Scenario |

Required y — Z’
coupling type

I Bare mass term |  Stueckelberg Vector Zr
mechanism ,

X

Non-zero ><

axial-vector

‘ Scenario X mass ‘ Z' mass ‘ Annihilation processes ‘ Z' pol ‘

NN NEN

The U(1) charge
assignments of N

and xg determine P
the relative size of )
the V and A . -
couplings. {
Yukawa coupling Stueckelberg ' ‘ ’ /
m to Dark Higgs mechanism Vector . P r
v Bare mass term Dark nggs Vector l W p4n
mechanism R

Yukawa coupling Dark Higgs

! !
to Dark Higgs mechanism &g
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Scenario 1l

Required y — Z’
coupling type

| Bare mass term StUECke“_)erg Vector Z5
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@ Couplings related:
Yx/8 = V2my/mz

@ s/Z' dominates over Z'Z’ when
kinematically allowed

@ Cross sections enhanced by
longitudinal Z' (for Z'Z’ this
only occurs when both vector
and axial couplings are
non-zero)

Bell, Cai, RKL, 1610.03063 (JCAP 2017)
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Scenario Il|

Required y — Z’

Scenario X mass Z' mass h Annihilation processes Z' pol
coupling type
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Dark Higgs, Z' mass from

@ Gauge and Yukawa couplings no longer related, freedom in processes
o If g < y,, p-wave processes such as xx — ss can be relevant
e Z' is only transversely polarized

10-22 i i i i 10-22
T sZ' mz. = 20 GeV T mz. = 20 GeV
10 ms = 20 GeV 10 me = 20 GeV
=g, =05
w 1024 Y = 9x 1 w 1072 g, =05 |
o ‘ o y, =01
§ 10-H yAVA § 10-% X 1
g — 26 E — 26
< 1072} ] < 10
10777 ¢ i 10-27
10—28 L L L L 1 -28 L L L L
0 200 400 600 800 1000 0 200 400 600 800 1000
m,[GeV] m,[GeV]
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Scenario 1V

Required y — Z’
coupling type
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Bare DM Mass, Z’ Mass from Stueckelberg

e Gauge and Yukawa couplings no longer related, U(1) charges of Z’
and dark Higgs unrelated

e Z' is only transversely polarized
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Two-mediator approach

@ Correctly enforcing gauge invariance is key for DM models, leads to
important phenomenology missed in “over-simplified” model approach

@ In general, can lead to interesting signatures for other models
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Higher order processes for DM annihilation

@ To significally probe nature of DM, want unsuppressed annihilation
mode
@ In many interesting models, s-wave is absent or helicity suppressed

» Indirect detection then unlikely, as p-wave suppression ~ 107°,
helicity suppression ~ (m¢/m,)?
» Dominant annihilation channel may be a higher order process
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SM Bremsstrahlung Annihilation Processes

@ Well known that helicity suppression in DM annihilation can be lifted
with bremsstrahlung of a SM particle

@ EM radiative corrections can give processes which dominate over lower

level XX — ff Bringmann et al, 0710.3169, 0808.3725
X f X f
4
Wiz VW) Z
X f X f

SM Final State Radiation (FSR)  SM Virtual Internal Bremsstrahlung
(VIB)
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Dark Initial State Radiation

@ Dark radiative corrections from the inital state can lift helicity and
p-wave suppression!

@ Requires two dark mediators, common in renormalizable theories

XXJP XX
X I

f
X !
Dark scalar ISR Dark vector ISR

Bell, Cai, Dent, RKL, Weiler, 1705.01105 (PRD 2017)

R.K.Leane (MIT) BSM Journal Club September 15th, 2017 30/ 48



Dark ISR vs. SM VIB or FSR

Dark ISR lifts suppression at lower order than SM VIB or FSR processes!

£5 — (X0 (FT )

A2
% f X f X VA f
X %’Wﬁz
X X f X 7
22 SM FSR/VIB Dark ISR
(ov) o< 1/N\* (ov) oc 1/N8 (ov) o< 1/A\*

Bell, Cai, Dent, RKL, Weiler, 1705.01105 (PRD 2017)
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Complementarity with collider searches

Dark ISR is complementary probe of a mono-Z’ or mono dark Higgs
collider search
— Indirect detection —

X f

=|
|

< Collider «+
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Lifts suppression in several cases

Fools | o FF Xx — ffZ' Xx — ffo
Fz=V|Tz=A|T4g=5|Ty=P
VeVv 1 1 1 1 1
ARV v2 1 1 v? v2
VoA 1 1 1 1 1
AR A | (mg/my)? 1 1 v2 v2
S®S v2 1 v2 v2 1
P®S 1 1 v2 1* v?
S®P v2 1 v2 v2 1*
P& P 1 1 v2 1 v2

Bell, Cai, Dent, RKL, Weiler, 1705.01105 (PRD 2017)
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Pseudoscalar ISR example

@ Lowest order S ® S DM annihilation is p-wave, suppressed as
m 2
<UV>Xx—>fF ~ 87‘(’/\4‘/

@ Introduce a pseudoscalar coupling to the DM,

1 o
Lint D p(xx)(f f) +igsdpX5X

@ New ISR process is s—wave, competes with also induced xx — ¢¢pd

X ———T-------- ¢
--------- o
X———t-------- @
Pseudoscalar ISR XX — PP
g5m3, &
(V) ~ zamana (ov) ~ 1536mm2

R.K.Leane (MIT) BSM Journal Club September 15th, 2017 35 /48



Pseudoscalar ISR example
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Dark ISR easily dominates the parameter space.
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Other Ingredients for DM Discovery?

@ Correctly enforcing gauge invariance is key for DM models, leads to
important phenomenology missed in “over-simplified” model approach

@ Another important avenue is finding distinctive new signatures,
exploiting strengths of different experiments
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Complementary probe of the DM scattering cross section

DM can be captured in the Sun by scattering with solar nuclei.

@ Of possible DM annihilation modes, only neutrinos weakly interacting
enough to escape

@ These neutrinos are measured at SuperK and IceCube, provide probe
of DM scattering cross section

@ What if DM annihilates to long-lived mediators instead?
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Solar signatures of long-lived dark mediators

If annihilation proceeds via long-lived dark mediators:
@ Neutrinos will be less attenuated
@ Other particles such as gamma rays can escape

v (extinguished) v (less attenuated)

~ (extinguished)

v (attenuated) (unattenuated)

Short-lived mediators Long-lived mediators

RKL, Ng, Beacom, 1703.04629 (PRD 2017)
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Measuring gamma rays with new Fermi-LAT data

Annihilation fluxes of DM to gamma rays in solar core are enormous.

For example, if 100 GeV DM with scattering aig ~ 10740 cm? annihilates
directly to gamma rays, the energy flux is

~107*GeVem2s L

In this region, the sensitivity of Fermi-LAT is
~1078GeVem2s7 L

The annihilation flux is in excess of sensitivity by a factor of 10!

— Long-lived mediators open a window to otherwise lost DM signals,
potentially large rates!

RKL, Ng, Beacom, 1703.04629 (PRD 2017)

R.K.Leane (MIT) BSM Journal Club September 15th, 2017 40 / 48



Searches in gamma ray and neutrino channels

Gamma rays:
@ Current limits use Fermi data on solar gamma rays
> 2011 and 2015 analyses

@ Future sensitivity with water cherenkov telescopes HAWC and
LHAASO
» HAWC has data, sensitive to very high-energy (>TeV) gamma
rays
» LHAASO upcoming, also extremely sensitive to very high-energy
(>TeV) gamma rays
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Searches in gamma ray and neutrino channels

Gamma rays:
@ Current limits use Fermi data on solar gamma rays
> 2011 and 2015 analyses

@ Future sensitivity with water cherenkov telescopes HAWC and
LHAASO

» HAWC has data, sensitive to very high-energy (>TeV) gamma
rays

» LHAASO upcoming, also extremely sensitive to very high-energy
(>TeV) gamma rays

Neutrinos:
@ Best gain for long-lived mediators is at higher (>TeV) energies

P> Less neutrino absorption by the solar matter
» Less cooling of the secondaries (pions, muons etc)

@ Use gigaton neutrino telescopes lceCube and KM3NeT
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Long-lived dark mediator flux

do T dN
2 ann 2

_— = Ef— x Br(Y — PSurV7 1
dE ~4zD2 " dE " H(Y = SM) x @)

where
@ Dg =1 A.U. is the distance between the Sun and the Earth
e E2dN/dE is the particle energy spectrum per DM annihilation

@ Br(Y — SM) is the branching fraction of the mediator Y to SM
particles

@ Pgurv is the signal survival probability
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Energy spectra

@ Processis xx — YY = 2(SM +SM) — ...y, v...

@ Generate energy spectra with PYTHIA

@ Check variance for range of mediator masses, my = 20,200, 2000
GeV. Spectra are approx the same.

T T T
10°F Y= 2(ve7b) ~ e

m, =5 TeV

E? dN/dE, [ GeV ]
dN/dE, [ GeV ]

1
E2

10° 10
E [ GeV] E, [ GeV ]

RKL, Ng, Beacom, 1703.04629 (PRD 2017)
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Optimal Signal Conditions

1.0

T
rdecay

1
ratEarth
1

0.8 - Psurv _ e—R@/’yCT - e—D@/’YCT. (2)

oo ! 7 Need mediator Y to have sufficiently
a? long lifetime 7 or boost factor
0.4 : 1 v = my/my, leading to a decay
length L that exceeds the radius of
0-2- 1  the Sun, Ry, as
0.0 10' 10\12 1(;1:3 1(::14 1015 10% L= YCT > R@. (3)

~yer [ em ]

RKL, Ng, Beacom, 1703.04629 (PRD 2017)
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Determining sensitivity: Gamma rays

Scan over DM masses, once gamma-ray spectrum exceeds sensitivity, limit
is set
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DM scattering cross section limits: Gamma rays

Can outperform direct detection exps by several orders of magnitude!
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Outperforms both direct detection exps and standard neutrino searches

R.K.Leane (MIT)
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Understanding the nature of DM is one of the foremost goals of the
physics community. Important steps forward for discovery include:

Theoretically consistent models:
@ Single mediator Simplified Models not always self-consistent
@ Two mediators can be required by gauge invariance

P Leads to different phenomenology
> New s-wave processes, which can dominate the annihilation rate

P> Allows the scalar to be probed with comparable strength to the

vector
New ways of exploiting complementarity of DM searches:
@ DM annihilation to long-lived mediators in the Sun provides probe of

DM scattering cross section
@ Can be tested at both direct and indirect detection exps

» Bonus: cross-check between indirect det channels

@ Can outperform direct detection exps by several orders of magnitude
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Long-lived dark mediator flux

do T dN
2 ann 2

2= E2S2 X Bi(Y — SM) X Paure. 4
dE ~ anpz < E g ¥ Br(Y 7 SM)x “)

where
@ Dg =1 A.U. is the distance between the Sun and the Earth
o E2dN/dE is the particle energy spectrum per DM annihilation
@ Br(Y — SM) is the branching fraction of the mediator Y to SM
particles

@ Pguv is the probability of the signal surviving to reach the detector,

given by
Psurv _ e—R@/’yCT - e—D@/'ycr_ (5)

Need mediator Y to have sufficiently long lifetime 7 or boost factor
v = my/my, leading to a decay length L that exceeds the radius of the
Sun, Ra, as

L=~cr > Ro. (6)
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Gamma-ray limit procedure
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Gamma-ray limits
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Neutrino limit procedure
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Long-lived dark mediator constraints

o BBN: The observed relic abundance of SM particles by BBN implies
any new mediator must have lifetime 7 which satisfies 7 < 1s.

e CMB: DM annihilation to SM products in the early universe is
constrained by the CMB.

e Supernovae: Particularly for low mass mediators (<GeV), from
mediator decay and supernova cooling.

o Colliders: If the dark sector is secluded, may be negligible.
Otherwise, Belle, BaBar, ATLAS and CMS

e Beam Dump/Fixed Target experiments: Most relevant when the
mediator has ~sub-GeV mass. E137, LSND and CHARM

@ Other indirect detection signals: Fermi-LAT and DES
measurements of dSphs at low DM mass, and large positron signals
can be constrained by AMS-02

@ Thermalization and Unitarity: Issues with thermalization for > 10
TeV DM, and unitarity issues over O(100) TeV DM mass.
Furthermore bound state effects at high DM mass.
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Two-Mediator Scenario: Charge Assignments

Yukawa term is

EYukawa = - (yXYRXLS + hC) 5 (7)

and so the charges of the dark sector field must be chosen to satisfy

Qur — @y, = Qs - (8)
Set the dark Higgs charge to Qs = 1. The x charges therefore satisfy
1 1
Qa= E(QXR QXL) = 2 (9)
1 1
Qv = E(QXR + QXL) 5 + QXL' (10)

These charges determine the vector and axial-vector couplings of the Z’ to
the x. Qg4 is completely determined, while there is freedom to adjust Qv
by choosing @y, , appropriately.
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Two-Mediator Scenario: Indirect Detection Constraints
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Lagrangian: Scenario |

In all scenarios, the gauge group is: SM ® U(1),, and so the the covariant
derivative is D, = DSM + ngXZL, where @ denotes the U(1), charge.

Bare DM Mass, Z’ Mass from Stueckelberg

This is the most minimal spin-1 setup, and no additional fields are
introduced, as Z’ obtains mass via Stueckelberg and DM is vectorlike so a
bare mass term is allowed. The lagrangian is

. . sine _ 1
L= Lsm+iX(0+ igyQuZ )"\ — TZWVBW — myxx + §m%/Z’“ZL-

(11)
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Lagrangian: Scenario |l

In this scenario, the vev of the dark Higgs field provides a mass generation
mechanism for the dark sector fields Z’ and y. Before electroweak and
U(1), symmetry breaking, the most general Lagrangian is

- - _ sine_,,.,
L= Lsm+ iX DxL+ iXgDPxr — (" XrXxLS + h.c.) — TZ/“ B,
+(DS)(D,S) — 13STS — As(S7S)? = Ans(STS)(HTH). (12)

After symmetry breaking, this becomes

1 1
LD— §m§s2 + Em%,Z’“ZL — my XX
+giwZ"Z)s — Asws® — 2\pshs(vs+wh) +ge > ZLFTHF (13)
f
_ _ Yx
— & QuZ XV — 8 QaZ, X" v5X — 7"55><x :
R.K.Leane (MIT)
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Lagrangian: Scenario IlI

DM Mass from Dark Higgs, Z’ Mass from Stueckelberg

The most minimal Lagrangian for this scenario is

_ ) sin "
L=Lsu + IX(0+ Q) x— T500 = 52" B (14)

1 1 1 1
+ 50u00" — Sp3d? — At — SAns*(HTH),

with the real scalar ¢ = w + s, where w is the vev of ¢ and s is the dark
Higgs. The vectorlike charge Qv can be chosen freely.
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Lagrangian: Scenario IV

Bare DM Mass, Z’' Mass from Dark Higgs

The most minimal gauge invariant Lagrangian is

. . sine_,,,,, o
L = Lsy+iX (3 + ’ngVZ,) X — sz Bw/ — My XX (15)

+ (0" + ig Qs 2")S]" [0, + i QsZ))S] — y2S'S
- )\S(STS)2_)\hs(ST5)(HTH)‘

The vectorlike charge Qv and dark Higgs charge Qs under the dark U(1),
can be chosen freely.
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Charge assignments

Yukawa term is

Lyukawa = — (yXYRXLS + hC) s

and so the charges of the dark sector field must be chosen to satisfy

Qg — @y = Qs -
Set the dark Higgs charge to Qs = 1. The x charges therefore satisfy
1 1
Qa= E(QXR Q) = bX
1 1
Qv = E(QXR_'_QXL) §+QXL

These charges determine the vector and axial-vector couplings of the Z’ to
the x. Qg4 is completely determined, while there is freedom to adjust Qv
by choosing @y, , appropriately.
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Scenario I: Full Lagrangian

In all scenarios, the gauge group is: SM ® U(1),, and so the the covariant
derivative is D, = DﬁM + "ngZ;/u where @ denotes the U(1), charge.

Bare DM Mass, Z’ Mass from Stueckelberg

This is the most minimal spin-1 setup, and no additional fields are
introduced, as Z’ obtains mass via Stueckelberg and DM is vectorlike so a
bare mass term is allowed. The lagrangian is

. ) sine_,,,,,
L= Lsm+iX(9u + igyQuZ )X — TZ'“ B,
1
— meX + §m%/2/uZL.
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Scenario Il: Full Lagrangian

In this scenario, the vev of the dark Higgs field provides a mass generation
mechanism for the dark sector fields Z’ and x. Before electroweak and
U(1), symmetry breaking, the most general Lagrangian is

i i~ - sine
L= Lsm+ X Pxi + iXrPxr — (7 XrXLS + h.c.) — TZ/WB’W

+(D"S)1(D,S) — 12STS — Xs(S7S)? — Mns(STS)(HTH).
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Scenario Il: Relic Density
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Scenario Ill: Full Lagrangian

DM Mass from Dark Higgs, Z' Mass from Stueckelberg

The most minimal Lagrangian for this scenario is

. . _ sine_,,.,
L=Lsw + iX(#+igQu?)x— %xw Mezmg,,

1 1 1
+ 50u00"0 = Spusd” = Ao — §Ahs¢2(HT H),

with the real scalar ¢ = w + s, where w is the vev of ¢ and s is the dark
Higgs.
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Scenario Ill: Relic density

= = =
2 2 2
5 S s
° e ° °

Rt — ¥lg=1 — wlg=1

o —,I9x=5 —_—,Igy=5 —_—,I0y=5

mz=20 GeV mz=20 GeV mz=200 GeV

ms=20 GeV ms=200 GeV > mg=20 GeV

-1.4 -14
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
my [GeV] my [GeV] my [GeV]
R.K.Leane (MIT BSM Journal Club

h, 2017 66




Scenario IV: Full Lagrangian

Bare DM Mass, Z’' Mass from Dark Higgs

The most minimal gauge invariant Lagrangian is

. . sine _,,,,, o
L = £5M+1X($+lngvZ')X—TZ'“ By, — myXx

+ [(0" +ig QsZ")S] [0, + igy QsZ,)S] — 2SS
— As(STS)? — Aps(STS)(HTH).
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Scenario IV: Relic Density
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Indirect Detection Constraints
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Unitarity bounds

m™m=,

s< %
ngX

m™m
Z/

mg < 5 A
8

Parameters related, sensible choices required to avoid unitarity problems:

mzr = gXW
1

— w
Vo

Vx/8 = ﬁmx/mZ’

my =
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Vector ISR example
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