GAMMA-RAY SEARCHES FOR DARK MATTER

REBECCA LEANE SLAC NATIONAL ACCELERATOR LABORATORY

IDM 2022, VIENNA, AUSTRIA JULY 21st 2022

Why indirect detection is exciting

- Universe has been running experiments <u>for us</u> over very long time scales
- Can uniquely access specific scales: long decay lengths, smaller couplings, high energies
- Dark matter in its natural habitat
 - Well defined target rates

Outline

- Traditional Indirect Detection
 - Ingredients for Searches
 - Gamma Ray Instruments
 - Now and future, sensitivities
 - Combining constraints

- New Astrophysical Searches
 - DM in astrophysical objects
 - Gamma-ray signals

Ingredients for Indirect Searches

Rebecca Leane

- DM annihilation or decay rate
- Particle model dependent, usually fixed by relic abundance

Ingredient #2: Energy Spectrum

- Also driven by particle physics model
- Shape depends on:
 - branching ratios to final SM states
 - boosts of particles

Ingredient #3: DM Density+Distribution

- Line of sight integral over DM density
 - J-factor (annihilation)
 - D-factor (decay)

- DM density profiles not well-known
 - large uncertainties

Particle Physics Astrophysics

(Gamma rays: straight propagation!)

$$\Phi(E,\phi) = \frac{\Gamma}{4\pi m_{\chi}^{a}} \frac{dN}{dE} \int \rho[r,(\ell,\phi)]^{a} d\ell.$$

Particle Physics Astrophysics

(Gamma rays: straight propagation!)

 $\Phi(E,\phi) = \frac{\Gamma}{4\pi m_{\chi}^{a}} \frac{dN}{dE} \int \rho[r,(\ell,\phi)]^{a} d\ell.$

Annihilation cross section

Particle Physics Astrophysics

Annihilation cross section

Energy spectrum

(Gamma rays: straight propagation!)

Annihilation cross section

Energy spectrum

"J factor", DM density

10¹

Gamma-ray Instruments: Sensitivity and Future Goals

Rebecca Leane

High energy gamma rays: now

Fermi

Space based

~10 MeV - 1 TeV

Data recording ~13 years elapsed HAWC, LHAASO

Water Cherenkov

~100 GeV-100 TeV

Data recording ~5 years elapsed

VERITAS, HESS, MAGIC

Imaging atmospheric Cherenkov telescopes

~10 GeV-100 TeV

Data recording ~17 years elapsed

Signals from Dwarf Spheroidal Galaxies

• Generally strongest probe, but keep in mind systematics!

DM density uncertainties weaken limits further See also Chang, Necib '20

High energy gamma rays: dwarfs

RL et al, 2018 (See also Fermi Collab 2016) Fermi + HAWC + HESS + MAGIC + VERITAS

Rebecca Leane

Fermi: Galactic Center Excess

- Statistically significant excess in gamma-rays peaked at a few GeV
- Presents with features consistent with DM: intensity, morphology, spectrum
- Origin currently unknown!
 - See Dan Hooper's talk today
 - GCE parallel talks today:
 - Mattia Di Mauro
 - Ilias Cholis
 - Oscar Macias
 - Florian List

Daylan, et al. (2014)

High energy gamma rays: future

SWGO

Water Cherenkov

 $\sim 100 \text{ GeV-1 PeV}$

Cherenkov Telescope Array (CTA)

> Imaging atmospheric Cherenkov telescope

~20 GeV-300 TeV

Planned ~2024

High energy gamma rays: future

Strong potential to probe much of thermal relic target

Solid probe of ultra-heavy DM

Viana+, 2019

Closing the MeV gap

- Last major experiment in the ~MeV gamma-ray band was COMPTEL, 1991-2000
- Closing this gap is important for:
 - providing greater sensitivity to light DM in the MeV-GeV mass range
 - enabling data-driven studies of backgrounds

AMEGO collab, '19

Closing the MeV gap

Combining searches

Rebecca Leane

Complementarity: cornering WIMPs

Complementarity: cornering WIMPs

WIMP is not dead!

RL, Slatyer, Beacom, Ng, '18

Use all possible final states, combine strongest limits S-wave $2\rightarrow 2$ thermal DM to visible states: mass greater than ~20 GeV

Vital to push through this window

Rebecca Leane

New gamma-ray searches

Rebecca Leane

New Gamma-Ray Searches

- Traditional indirect detection:
 - Look for annihilation or decay products in dark matter halos

- Alternate signal:
 - Gamma rays from celestial objects!

Data next 5 - 10 years

Fermi-LAT, HAWC, HESS gamma-ray data available now

- Radius: Larger amount of DM captured, larger annihilation signal
- **Density:** Easier to trap DM, sensitivity to weaker interactions
- Core temperature: Higher temperature gives more kinetic energy to DM, can kick out the DM (not good!)

Galactic Center Signal

- Galactic Center benefits:
 - High DM density
 - Lower DM velocity
 - Lots of neutron stars and brown dwarfs present

Galactic Center Population Signal

Use all the neutron stars, all the brown dwarfs

Indirect detection flux with celestial objects!

RL, Linden, Mukhopadyay, Toro, 2021

 Signal morphology: DM density squared, vs DM density*stellar density

 Celestial-body "focused" annihilation "focuses" rate above halo levels

 Only s-wave detectable in the halo, and only for lighter DM masses

RL, Linden, Mukhopadyay, Toro, 2021

Gamma-ray population detectability

- Detectability: compare with known gamma-ray data
 - Use Fermi and H.E.S.S. data for Galactic Center
 - No model assumptions on mediator, other than must escape
 - Brown dwarfs very large signal!

RL, Linden, Mukhopadyay, Toro, 2021

New Limits w/ Brown Dwarfs and Neutron Stars

Brown Dwarf	Neutron Star	Sun	Jupiter
BIG Cold	Small Cold	BIG Hot	BIG Cold

Available data: Fermi, HAWC

Limitations:

+ Hot+ Higher DM evaporation (~GeV mass)

Benefits:

- + Huge
- + Proximity
- + Excellent data

THE SUN

THE SUN

• Long-lived particle scenario, excellent gamma-ray sensitivity

<u>See earlier:</u> Schuster, Toro, Weiner, Yavin '10 Batell, Pospelov, Ritz, Shang '10 Meade, Nussinov, Pappuci, Volansky '10 Leane, Ng, Beacom (PRD '17) Leane + HAWC Collaboration (PRD '18 a,b)

THE SUN

Long-lived particle scenario, excellent gamma-ray sensitivity

<u>See earlier:</u> Schuster, Toro, Weiner, Yavin '10 Batell, Pospelov, Ritz, Shang '10 Meade, Nussinov, Pappuci, Volansky '10

Rebecca Leane (SLAC)

Leane + HAWC Collaboration (PRD '18 a,b)

JUPITER

Leane, Linden 2021

Why Jupiter?

Sun Long-Lived Mediator Limits

Leane, Ng, Beacom (PRD '17) Leane + HAWC Collaboration (PRD '18)

Jupiter

Cooler than the Sun: MeV-DM mass sensitivity!

Jupiter in Gamma Rays

What does Jupiter look like in gamma rays? No one had ever really checked!

If we find gammas, they could be from:

+ acceleration of cosmic rays in Jovian magnetic fields

+ interaction of cosmic rays with Jupiter's atmosphere

...or something exotic (dark matter)!

Fermi Analysis of Jupiter

+ Analyze 12 years of Fermi data, 10 MeV – 10 GeV

+ Select photons within 45 degrees of Jupiter's orbit

+ Data-driven background model from Jupiter orbit when it is not there

+ Subtract "on" and "off" map events

Jupiter in Gamma Rays

Leane + Linden '21

New dark matter limits

Some assumptions:

+ direct decay to gammas (but other final states possible)

+ mediator decay length > Jupiter radius

+ equilibrium

Rebecca Leane (SLAC)

Leane + Linden '21

Summary and Outlook

- Dark matter unknown, key goal of our community
- Indirect detection probes a wide range of wavelengths and multi-messenger data
 - Dark matter in its natural habitat
 - Gamma rays: important role probing WIMP window
- Already have gamma-ray excess at Galactic Center
- Many excellent telescopes, upcoming SWGO, CTA
- New astrophysical searches with gamma-rays strong probe of DM properties

EXTRA SLIDES

Aramaki et al, '22

<u>Halo</u>

Annihilation Scaling: 1

$$\Gamma_{
m halo} \propto rac{\left<\sigma_A v\right> n_\chi^2}{2}$$

<u>Halo</u>

Annihilation Scaling: I

$$\Gamma_{
m halo} \propto rac{\left<\sigma_A v\right> n_\chi^2}{2}$$

Celestial-body population

<u>Halo</u>

Annihilation Scaling:

$$\Gamma_{\rm halo} \propto rac{\left< \sigma_A v \right> n_\chi^2}{2}$$

Celestial-body population

Max capture rate:

$$C_{\max} = \pi R^2 n_{\chi}(r) v_0 \left(1 + \frac{3}{2} \frac{v_{\text{esc}}^2}{\overline{v}(r)^2} \right) \xi(v_p, \overline{v}(r)),$$

<u>Halo</u>

Annihilation Scaling:

$$\Gamma_{
m halo} \propto rac{\left<\sigma_A v\right> n_\chi^2}{2}$$

Celestial-body population

Max capture rate:

$$C_{\max} = \pi R^2 n_{\chi}(r) v_0 \left(1 + \frac{3}{2} \frac{v_{\text{esc}}^2}{\overline{v}(r)^2} \right) \xi(v_p, \overline{v}(r))$$

Population capture rate:

$$C_{\rm BD/NS,tot} = 4\pi \int_{r_1}^{r_2} r^2 \, n_{\rm BD/NS} \, C \, dr$$

<u>Halo</u>

Annihilation Scaling:

$$\Gamma_{
m halo} \propto rac{\left< \sigma_A v \right> n_\chi^2}{2}$$

Celestial-body population

Max capture rate:

$$C_{\max} = \pi R^2 n_{\chi}(r) v_0 \left(1 + \frac{3}{2} \frac{v_{\text{esc}}^2}{\overline{v}(r)^2} \right) \xi(v_p, \overline{v}(r))$$

Population capture rate:

$$C_{\rm BD/NS,tot} = 4\pi \int_{r_1}^{r_2} r^2 \, n_{\rm BD/NS} \, C \, dr$$

Annihilation/Capture equilibrium:

$$\Gamma_{\rm ann} = \frac{\Gamma_{\rm cap}}{2}$$

<u>Halo</u>

Annihilation Scaling: Γ_1

$$_{
m halo} \propto rac{\left< \sigma_A v \right> n_\chi^2}{2}$$

 $\Gamma_{\rm ann} \propto n_{\chi} n_{\rm BD/NS}$

Celestial-body population

Max capture rate:

$$C_{\max} = \pi R^2 n_{\chi}(r) v_0 \left(1 + \frac{3}{2} \frac{v_{\text{esc}}^2}{\overline{v}(r)^2} \right) \xi(v_p, \overline{v}(r))$$

Population capture rate:

Annihilation Scaling:

$$C_{\rm BD/NS,tot} = 4\pi \int_{r_1}^{r_2} r^2 \, n_{\rm BD/NS} \, C \, dr$$

Annihilation/Capture equilibrium:

$$\Gamma_{\rm ann} = \frac{\Gamma_{\rm cap}}{2}$$

Jupiter Gamma-Ray Flux Limits

+ For range of power-law spectra, statistical sig of Jupiter emission never exceeds $\sim 1.5\sigma$

+ In low energy bins, larger excess, but important systematics not there

+ Motivates follow-up with MeV telescopes: AMEGO, e-ASTROGAM

Rebecca Leane (SLAC)

Leane + Linden '21

Key Point: All diffuse models are not good

- Even the best diffuse models are far from good fits to the data
- Fitting to real data, and simulating based on best-fit parameters, does not return likelihoods expected within Poisson noise
- There is clearly a systematic here
- Better diffuse models are key to moving forward

Buschmann+, '20

Jupiter in Gamma Rays

Counts/deg²

Leane + Linden '21

Thermal equilibrium:
 DM + DM ⇒ visible particles
 Visible particles ⇒ DM + DM

 Thermal equilibrium: DM + DM ⇒ visible particles Visible particles ⇒ DM + DM

2) Universe cools, only DM + DM \Rightarrow visible particles

 Thermal equilibrium: DM + DM ⇒ visible particles Visible particles ⇒ DM + DM

2) Universe cools, only DM + DM \Rightarrow visible particles

3) Universe expands too fast.
 No more annihilations.
 DM abundance is set.

Predicts a particular annihilation rate for dark matter.

