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Abundance of evidence!
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What we think we know about dark matter

Dark matter is believed to be:

About 5 times more abundant than baryonic matter
Stable, or has lifetime greater than age of universe

Gravitationally interacting

Either neutral or very lightly charged under EM
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What we think we know about dark matter

Dark matter is believed to be:
@ About 5 times more abundant than baryonic matter
@ Stable, or has lifetime greater than age of universe
o Gravitationally interacting
o Either neutral or very lightly charged under EM
@ Mostly dissipationless

» Dark haloes do not allow for large amounts of cooling via
radiation

» Small fraction could be allowed via dark radiation (i.e. double
disk DM)
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What we think we know about dark matter

Dark matter is believed to be:

About 5 times more abundant than baryonic matter
Stable, or has lifetime greater than age of universe
Gravitationally interacting

Either neutral or very lightly charged under EM

Mostly dissipationless
» Dark haloes do not allow for large amounts of cooling via
radiation
» Small fraction could be allowed via dark radiation (i.e. double
disk DM)

Either non self-interacting or self-interacting

Mostly either cold (non-relativistic) or warm (semi-relativistic)

» Cold — missing satelites, cusp predicted but core observed
» Warm — not enough satelites
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Range of dark matter candidates

Many DM masses possible. Can be roughly 10731 < m, < 10%® GeV!
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Searches for particle dark matter

o WIMP dark matter well motivated: weak scale masses and interaction
strengths

@ Many candidates predicted by UV theories
@ Realistic detection prospects

Collider searches

q-x

Searches provide .
complementary Direct
information detection

T —

Indirect detection
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Effective field theories for dark matter
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@ Model independent

@ Useful at low energies, i.e. direct detection
@ Colliders? Need to be careful. Cutoff at new physics scale.
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Simplified models for dark matter

@ Only lightest mediator is retained, set limits on couplings and
mediators

@ Allows for richer phenomenology

Benchmark Simplified Models:

s-channel spin-1 s-channel spin-0 t-channel spin-0
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Status of simplified DM models

@ Not intrinsically capable of capturing full phenomenology of UV
complete theories
» Fine, but need to use when appropriate
» Issues with gauge invariance have motivated next generation,
“less simplified models”
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Status of simplified DM models

@ Not intrinsically capable of capturing full phenomenology of UV
complete theories
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» Issues with gauge invariance have motivated next generation,
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So many theories, so little time

@ Good to be model independent where possible, but also need to
ensure models are physically consistent, not to miss important
phenomenology

@ Another important avenue for discovery is finding distinctive new
signatures, exploiting strengths of different experiments
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Complementary probe of the DM scattering cross section

DM can be captured in the Sun by scattering with solar nuclei.

@ Of possible DM annihilation modes, only neutrinos weakly interacting
enough to escape

@ These neutrinos are measured at SuperK and IceCube, provide probe
of DM scattering cross section

@ What if DM annihilates to long-lived mediators instead?
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Solar signatures of long-lived dark mediators

If annihilation proceeds via long-lived dark mediators:
@ Neutrinos will be less attenuated
@ Other particles such as gamma-rays can escape
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Measuring gamma-rays with new Fermi-LAT data

Standard annihilation fluxes of DM to gamma-rays are enormous.
For example, if 100 GeV DM with scattering aig ~ 10749 cm? annihilates
directly to gamma-rays, the energy flux is

~1072GeVem 257t
In this region, the sensitivity of Fermi-LAT is
~ 1078 GeVem 257t
The annihilation flux is in excess of sensitivity by a factor of 108!

— Long-lived mediators open a window to otherwise lost DM signals,
potentially large rates!
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Searches in gamma-ray and neutrino channels

Gamma-rays:
@ Current limits use Fermi data on solar gamma-rays
> 2011 and 2015 analyses
@ Future sensitivity with water cherenkov telescopes HAWC and
LHAASO

» HAWC has data, sensitive to very high (>TeV) gamma-rays
» LHAASO upcoming, also extremely sensitive to very high
(>TeV) gamma-rays
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Searches in gamma-ray and neutrino channels

Gamma-rays:
@ Current limits use Fermi data on solar gamma-rays
> 2011 and 2015 analyses

@ Future sensitivity with water cherenkov telescopes HAWC and
LHAASO

» HAWC has data, sensitive to very high (>TeV) gamma-rays
» LHAASO upcoming, also extremely sensitive to very high
(>TeV) gamma-rays

Neutrinos:
@ Best gain for long-lived mediators is at higher (>TeV) energies

P> Less neutrino absorption by the solar matter
» Less cooling of the secondaries (pions, muons etc)

@ Use gigaton neutrino telescopes lceCube and KM3Net
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DM scattering cross section limits: Gamma-rays
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Can outperform direct detection exps by several orders of magnitude!
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DM scattering cross section limits: Neutrinos

Outperforms both direct detection exps and neutrino telescopes
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Conclusions

@ Exploiting complementary of searches key for DM discovery, as well as
common elements to many theories

@ DM annihilation to long-lived mediators in the Sun provides probe of
DM scattering cross section

@ Can outperform direct detection exps by several orders of magnitude

@ Potential signal can be tested at both direct and indirect detection
exps
» Further, gamma-ray and neutrino telescopes can allow for
cross-check between different indirect detection channels

Exciting time with new searches with TeV gamma-ray telescopes and
observatories, and new data from neutrino telescopes!
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Backup slides
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Long-lived dark mediator flux

do T dN
2 ann 2

— = E?—— x Br(Y — SM) x Pqyv, 1
dE 4770629X o < Bl SM) x (1)

where
@ Dg =1 A.U. is the distance between the Sun and the Earth
o E2dN/dE is the particle energy spectrum per DM annihilation

Br(Y — SM) is the branching fraction of the mediator Y to SM
particles

Psurv is the probability of the signal surviving to reach the detector,

given by
Psurv _ e—R@/’yCT - e—D@/'ycr_ (2)

Need mediator Y to have sufficiently long lifetime 7 or boost factor
v = my/my, leading to a decay length L that exceeds the radius of the
Sun, Ra, as

L=~cr > Ro. (3)
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Signal survival probability
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Gamma-ray limit procedure
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Gamma-ray limits
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Neutrino limit procedure
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Long-lived dark mediator constraints

o BBN: The observed relic abundance of SM particles by BBN implies
any new mediator must have lifetime 7 which satisfies 7 < 1s.

e CMB: DM annihilation to SM products in the early universe is
constrained by the CMB.

e Supernovae: Particularly for low mass mediators (<GeV), from
mediator decay and supernova cooling.

o Colliders: If the dark sector is secluded, may be negligible.
Otherwise, Belle, BaBar, ATLAS and CMS

e Beam Dump/Fixed Target experiments: Most relevant when the
mediator has ~sub-GeV mass. E137, LSND and CHARM

@ Other indirect detection signals: Fermi-LAT and DES
measurements of dSphs at low DM mass, and large positron signals
can be constrained by AMS-02

@ Thermalization and Unitarity: Issues with thermalization for > 10
TeV DM, and unitarity issues over O(100) TeV DM mass.
Furthermore bound state effects at high DM mass.
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Capture rate
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